Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1222596, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900754

RESUMEN

Potato late blight (causal agent Phytophthora infestans) is a disease of potatoes with economic importance worldwide. Control is primarily through field monitoring and the application of fungicides. Control of late blight with fungicides and host plant resistance is difficult, with documented cases of such control measures failing with the advent of new pathotypes of P. infestans. To better understand host plant resistance and to develop more durable late blight resistance, Quantitative Trait Locus/Loci (QTL) analysis was conducted on a tetraploid mapping population derived from late blight-resistant potato cultivar Palisade Russet. Additionally, QTL analyses for other traits such as Verticillium wilt and early blight resistance, vine size and maturity were performed to identify a potential relationship between multiple traits and prepare genetic resources for molecular markers useful in breeding programs. For this, one hundred ninety progenies from intercrossing Palisade Russet with a late blight susceptible breeding clone (ND028673B-2Russ) were assessed. Two parents and progenies were evaluated over a two-year period for response to infection by the US-8 genotype of P. infestans in inoculated field screenings in Corvallis, Oregon. In Aberdeen, Idaho, the same mapping population was also evaluated for phenotypic response to early blight and Verticillium wilt, and vine size and maturity in a field over a two-year period. After conducting QTL analyses with those collected phenotype data, it was observed that chromosome 5 has a significant QTL for all five traits. Verticillium wilt and vine maturity QTL were also observed on chromosome 1, and vine size QTL was also found on chromosomes 3 and 10. An early blight QTL was also detected on chromosome 2. The QTL identified in this study have the potential for converting into breeder-friendly molecular markers for marker-assisted selection.

2.
J Agric Food Chem ; 70(44): 14205-14219, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36306427

RESUMEN

The goal of this research was to screen plant essential oils (EOs) as sprout inhibitors or suppressors in potato (Solanum tuberosum L.). Three controlled environment experiments were conducted to screen 18 EOs and several pure compounds as sprout inhibitors. The EOs were applied using the wicked method on potato cv. Gala in 19 L plastic containers. The results indicated that Melissa officinalis L. EO inhibited sprouting, while Coriandrum sativum L. seed oil and the EO blend of Lavandula angustifolia Mill. and Salvia sclarea L. suppressed sprouting. The EOs of interest were analyzed using gas chromatography coupled to mass spectrometry (GC-MS) and/or a flame ionization detector (GC-FID); the detailed chemical profiles are provided. The M. officinalis EO was fractionated into seven fractions, and these were tested on minitubers. We identified two fractions (F and A) that suppressed potato sprouting better than the whole oil. The GC-MS-FID analyses of M. officinalis EO fraction A identified myrcene, Z-ocimene, E-ocimene, trans-caryophyllene, and α-humulene as the main constituents, while the main constituents of fraction F were α-terpineol, ß-citronellol, and geraniol. The pure isolated compounds, together with the major compound in M. officinalis EO (citral), were tested for sprout suppression on three potato cultivars (Ranger Russet, Terra Rosa, and Dakota TrailBlazer), which revealed that ß-citronellol reduced the sprout length and the number of sprouts in all three cultivars, while citral and (+)-α-terpineol reduced the sprout length and the number of sprouts in Ranger Russet relative to the two controls in all three cultivars. Myrcene had a stimulating effect on the number of sprouts in Cv. Terra Rosa. However, none of the pure compounds suppressed sprouting completely or were comparable to the EO of M. officinalis.


Asunto(s)
Melissa , Aceites Volátiles , Plaguicidas , Solanum tuberosum , Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles/química
3.
Plants (Basel) ; 11(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35631752

RESUMEN

There has been an increased interest in true potato seeds (TPS) as planting material because of their advantages over seed tubers. TPS produced from a tetraploid heterozygous bi-parental population produces non-uniform segregating progenies, which have had limited uniformity in yield and quality in commercial cultivation, and, thus, limited success. Inbreeding depression and self-incompatibility hamper the development of inbred lines in both tetraploid and diploid potatoes, impeding hybrid development efforts. Diploid potatoes have gametophytic self-incompatibility (SI) controlled by S-locus, harboring the male-dependent S-locus F-box (SLF/SFB) and female-dependent Stylar-RNase (S-RNase). Manipulation of these genes using biotechnological tools may lead to loss of self-incompatibility. Self-compatibility can also be achieved by the introgression of S-locus inhibitor (Sli) found in the self-compatible (SC) natural mutants of Solanum chacoense. The introgression of Sli through conventional breeding methods has gained much success. Recently, the Sli gene has been cloned from diverse SC diploid potato lines. It is expressed gametophytically and can overcome the SI in different diploid potato genotypes through conventional breeding or transgenic approaches. Interestingly, it has a 533 bp insertion in its promoter elements, a MITE transposon, making it a SC allele. Sli gene encodes an F-box protein PP2-B10, which consists of an F-box domain linked to a lectin domain. Interaction studies have revealed that the C-terminal region of Sli interacts with most of the StS-RNases, except StS-RNase 3, 9, 10, and 13, while full-length Sli cannot interact with StS-RNase 3, 9, 11, 13, and 14. Thus, Sli may play an essential role in mediating the interactions between pollen and stigma and function like SLFs to interact with and detoxify the S-RNases during pollen tube elongation to confer SC to SI lines. These advancements have opened new avenues in the diploid potato hybrid.

4.
Mol Breed ; 42(3): 12, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37309410

RESUMEN

Meloidogyne chitwoodi is a major threat to potato production in the Pacific Northwest region of the United States. Infected tubers are rendered unmarketable; hence, growers' profitability is adversely affected. Breeding for nematode resistance is a long-term process and phenotyping the segregating populations for nematode resistance is the most time-consuming and laborious part of the process. Using DNA-based markers closely linked to the nematode resistance trait for marker-assisted selection (MAS) could enhance breeding efficiency and accuracy. In the present study, a pool of phenotyped progenies segregating for nematode resistance and susceptibility were fingerprinted using a 21 K single-nucleotide polymorphism (SNP) array. Eight candidate SNPs located on potato Chromosome 11, segregating with the nematode resistance trait, were identified and used as landmarks for discovery of other marker types such as simple sequence repeat (SSR) and insertion-deletion (INDEL) markers. Subsequently, a total of eight SNPs, 30 SSRs, and four INDELS located on scaffold 11 of Solanum bulbocastanum were used to design primers; markers were validated in a panel of resistant and susceptible clones. Two SNPs (SB_MC1Chr11-PotVar0066518 and SB_MC1Chr11-PotVar0064140), five SSRs (SB_MC1Chr11-SSR04, SB_MC1Chr11-SSR08, SB_MC1Chr11-SSR10, SB_MC1Chr11-SSR13, and SB_MC1Chr11-SSR20), and one INDEL (SB_MC1Chr11-INDEL4) markers showed polymorphism between the resistant and susceptible clones in the test panel and in other segregating progenies. These markers are robust, highly reproducible, and easy to use for MAS of nematode-resistant potato clones to enhance the breeding program. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01285-w.

5.
Cells Tissues Organs ; 192(6): 361-73, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20664250

RESUMEN

Mammalian olfactory epithelium can withstand the external environment, undergo life-long regeneration, and respond to thousands of odorant stimuli, making it an attractive system for a variety of studies. Previously, we described a long-lived olfactory coculture of olfactory epithelium and bulb tissues and we present here the kinetic properties of that culture system. Neonatal mouse epithelial-bulbar explants were grown for periods as long as 121 days in vitro (DIV), nearly doubling the survival time of our previously longest lived cultures. Cultures at all ages responded to air-borne odorants. The youngest cultures (1-15 DIV) showed shorter half-rise and half-decay times than older cultures (21-121 DIV), and were more variable in their half-decay times. Zinc nanoparticles enhanced electro-olfactogram responses of both younger and older cultures and both groups were immunopositive for olfactory marker protein. The results show that our olfactory culture model can support mature, odorant-responsive olfactory receptor neurons that possess many of the response features of in situ olfactory receptor neurons.


Asunto(s)
Odorantes , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/metabolismo , Animales , Animales Recién Nacidos , Butiratos/farmacología , Monoterpenos Ciclohexánicos , Eugenol/farmacología , Técnicas In Vitro , Nanopartículas del Metal/química , Ratones , Monoterpenos/farmacología , Zinc/química
6.
J Environ Qual ; 37(6): 2070-82, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18948460

RESUMEN

Current phytotoxicity plant test protocols for US pesticide registration require testing for effects on seedling emergence and early growth without regard to other important factors, such as plant reproduction. Yield and quality reduction can have significant economic and ecological effects. Therefore, field trials were conducted to determine if potato (Solanum tubersum L.) vegetative growth and tuber yield and quality were affected by herbicides at below recommended field rates. Potatoes were grown in fields at the Oregon State University Horticulture Farm with herbicides applied at below recommended field application rates 14 d after emergence (DAE) or at 28 DAE. Plant height was measured before and 14 d after application. Visual foliar injury was rated 14 d after application, and tuber yield and quality parameters were measured at harvest (120 DAE). Some tubers were grown in the greenhouse the following year to determine if there were carry-over effects. Potato vegetation and tuber yield quality were generally more affected by herbicides applied at 14 DAE than at 28 DAE. Tuber yield and quality parameters were more affected by lower herbicide rates than were plant height or injury. There were significant yield losses caused by low rates of sulfometuron methyl and imazapyr and, to a lesser extent, with glyphosate and cloransulam-methyl. Bromoxynil and MCPA ((4-chloro-2-methylphenoxy)acetic) acid had little effect on the plants. Vegetative responses did not accurately predict yield and quality responses of tubers; therefore, reproductive responses should be considered in phytotoxicity test protocols for pesticide registration in the USA.


Asunto(s)
Herbicidas/toxicidad , Residuos de Plaguicidas/toxicidad , Solanum tuberosum/efectos de los fármacos , Herbicidas/química , Estructura Molecular , Residuos de Plaguicidas/química , Factores de Tiempo
7.
Biosens Bioelectron ; 22(8): 1605-11, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16904886

RESUMEN

The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.


Asunto(s)
Anfotericina B/química , Técnicas Biosensibles/métodos , Canales Iónicos/química , Lípidos de la Membrana/química , Fosfolípidos/química , Permeabilidad de la Membrana Celular , Conductividad Eléctrica , Nanotecnología , Porosidad , Silicio
8.
Biosens Bioelectron ; 22(7): 1359-67, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16842986

RESUMEN

The antimycotic activity of amphotericin B (AmB) depends on its ability to make complexes sterols to form ion channels that cause membrane leakage. To study this phenomenon, surface pressure (pi) as a function of surface area (A) and pi-A hysteresis were measured in monolayers of AmB-cholesterol mixtures on the water-air interface. The most stable monolayers were produced from molecules of AmB and cholesterol with 2:1 stoichiometry. At this ratio, AmB and cholesterol interact to form ion channels in lipid bilayers with millisecond dwell times and conductances of 4-400 pS. The AmB-cholesterol complexes assemble in three, four, etc., subunit aggregates to form ion channels of diverse and large-conductances. Their I-V characteristics were linear over a range of +/-200 mV. The channel currents were inhibited by the addition of tetraethylammonium (TEA), potassium channel blocker, to the cis-side of the membrane. Likewise, AmB-cholesterol complexes reconstituted in membrane-coated nanoporous silicon dioxide surfaces showed single channel behavior with large amplitudes at various voltages. Large-conductance ion channels show great promise for use in biosensors on solid supports.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Colesterol/fisiología , Canales Iónicos/fisiología , Membrana Dobles de Lípidos/metabolismo , Anfotericina B/química , Antifúngicos/química , Transporte Biológico Activo/fisiología , Colesterol/química , Canales Iónicos/química , Membrana Dobles de Lípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...